SAMPLE QUESTION PAPER Class X Session 2024-25 MATHEMATICS STANDARD (Code No.041)

MAX.MARKS: 80

General Instructions:

TIME: 3 hours

Read the following instructions carefully and follow them:

- 1. This question paper contains 38 questions.
- 2. This Question Paper is divided into 5 Sections A, B, C, D and E.
- **3.** In Section A, Questions no. 1-18 are multiple choice questions (MCQs) and questions no. 19 and 20 are Assertion- Reason based questions of 1 mark each.
- **4.** In Section B, Questions no. 21-25 are very short answer (VSA) type questions, carrying 02 marks each.
- 5. In Section C, Questions no. 26-31 are short answer (SA) type questions, carrying 03 marks each.
- **6.** In Section D, Questions no. 32-35 are long answer (LA) type questions, carrying 05 marks each.
- 7. In Section E, Questions no. 36-38 are case study based questions carrying 4 marks each with sub parts of the values of 1, 1 and 2 marks each respectively.
- **8.** All Questions are compulsory. However, an internal choice in 2 Question of Section B, 2 Questions of Section C and 2 Questions of Section D has been provided. An internal choice has been provided in all the 2 marks questions of Section E.
- 9. Draw neat and clean figures wherever required.
- **10.** Take π =22/7 wherever required if not stated.
- 11. Use of calculators is not allowed.

			Section A		
		Section A con	sists of 20 questions of	f 1 mark each.	
1.	(4,-20) and (6	6,0). The zeroes of	omial p(x) passes through the polynomial are C) - 30,-20	n the points (-6,0), (0, -30), D) - 6,6	1
2.	inconsistent,	•	tem of equations 3x-ky=	7 and 6x+ 10y =3 is D) 7	1
3.	A) A number B) Only one t C) A chord is	angent can be dra a line segment joi	nts is not true? drawn at any point on the wn at any point on a circlening two points on the circlenly two tangents can be	e. cle	1
4.	If nth term of A) 7	an A.P. is 7n-4 the B) 7n	en the common difference C) - 4	e of the A.P. is D) 4	1

5.	in length. If the	The radius of the base of a right circular cone and the radius of a sphere are each 5 cm in length. If the volume of the cone is equal to the volume of the sphere then the height of the cone is A) 5 cm B) 20 cm C) 10 cm D) 4 cm					
	A) 5 cm	В) 20) cm	C) 10 cm	(U	4 cm	
6.	If $\tan \theta = \frac{5}{2}$ the A) $\frac{11}{9}$	$\frac{4\sin\theta + c}{4\sin\theta - c}$ B) $\frac{3}{2}$		to $C)\frac{9}{11}$	D) 4		1
	7 9	2		11			
 7. 8. 	T P If ∠ TPQ= 11 A) 110° A quadratic po	Q 0^o then $\angle POO$ olynomial have	Q is equal to B) 70°	rawn at a point P $\frac{\text{C) } 14}{\sqrt{\frac{5}{2}} \text{ and } \sqrt{\frac{5}{2}} \text{ is } \\ \text{C) } 15x^2 - 6$	00	D)55 ⁰	1
9.	Consider the frequency distribution of 45 observations.						
	Class	0-10	10-20	20-30	30-40	40-50	
	Frequency	5	9	15	10	6	
	The upper lim A) 20		class is B) 10	C) 30		D) 40	
10.	D O A If $\angle BOC = 80$	B	DD then ⊿0DA	and $\triangle OBC$ are	a circle.		1

11.	The roots of the quadratic equation $x^2+x-1=0$ are A) Irrational and distinct B) not real C) rational and distinct D) real and equal	1
4.0		4
12.	If $\theta = 30^{\circ}$ then the value of $3\tan\theta$ is A)1 B) $\frac{1}{\sqrt{3}}$ C) $\frac{3}{\sqrt{3}}$ (D) not defined	1
13.	The volume of a solid hemisphere is $\frac{396}{7}$ cm ³ . The total surface area of the solid	1
	hemisphere (in sq.cm) is A) $\frac{396}{7}$ B) $\frac{594}{7}$ C) $\frac{549}{7}$ D) $\frac{604}{7}$	
14.	In a bag containing 24 balls, 4 are blue, 11 are green and the rest are white. One ball is drawn at random. The probability that drawn ball is white in colour is $A)\frac{1}{6} \qquad \qquad B)\frac{3}{8} \qquad \qquad C)\frac{11}{24} \qquad \qquad D)\frac{5}{8}$	1
15.	The point on the x- axis nearest to the point (-4,-5) is A) $(0,0)$ B) $(-4,0)$ C) $(-5,0)$ D) $(\sqrt{41},0)$	1
16.	Which of the following gives the middle most observation of the data? A) Median B) Mean C) Range D) Mode	1
17.	A point on the x-axis divides the line segment joining the points A(2, -3) and B(5, 6) in the ratio 1:2. The point is	1
	A) $(4, 0)$ B) $(\frac{7}{2}, \frac{3}{2})$ C) $(3, 0)$ D) $(0,3)$	
18.	A card is drawn from a well shuffled deck of playing cards. The probability of getting red face card is	1
	A) $\frac{3}{13}$ B) $\frac{1}{2}$ C) $\frac{3}{52}$ D) $\frac{3}{26}$	
	DIRECTION: In the question number 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option A)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) B)Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) C)Assertion (A) is true but reason (R) is false. D)Assertion (A) is false but reason (R) is true.	
19.	Assertion (A): HCF of any two consecutive even natural numbers is always 2. Reason (R): Even natural numbers are divisible by 2.	1
20.	Assertion (A): If the radius of sector of a circle is reduced to its half and angle is doubled then the perimeter of the sector remains the same.	1

	Reason (R): The length of the arc subtending angle θ at the centre of a circle of radius r = $\frac{\Pi r \theta}{180}$.	
	Section B	
	Section B consists of 5 questions of 2 marks each.	
21.	(A)Find the H.C.F and L.C.M of 480 and 720 using the Prime factorisation method. OR (A) The H.C.F of 85 and 238 is expressible in the form 85m -238. Find the value of m.	2
22.	 (A) Two dice are rolled together bearing numbers 4, 6, 7, 9, 11, 12. Find the probability that the product of numbers obtained is an odd number OR (B) How many positive three digit integers have the hundredths digit 8 and unit's digit 5? Find the probability of selecting one such number out of all three digit numbers. 	2
23.	Evaluate: $\frac{2sin^2 60^o - tan^2 30^o}{sec^2 45^o}$	2
24.	Find the point(s) on the x-axis which is at a distance of $\sqrt{41}$ units from the point (8, -5).	2
25.	Show that the points A(-5,6), B(3, 0) and C(9, 8) are the vertices of an isosceles triangle.	2
	Section C	
	Section C consists of 6 questions of 3 marks each.	
26.	(A) In \triangle ABC, D, E and F are midpoints of BC,CA and AB respectively. Prove that \triangle FBD \sim \triangle DEF and \triangle DEF \sim \triangle ABC OR (B) In \triangle ABC, P and Q are points on AB and AC respectively such that PQ is parallel	3
	to BC.	

	Prove that the median AD drawn from A on BC bisects PQ.	
	P R Q B D C	
27.	The sum of two numbers is 18 and the sum of their reciprocals is 9/40. Find the numbers.	3
28.	If α and β are zeroes of a polynomial $6x^2$ -5x+1 then form a quadratic polynomial whose zeroes are α^2 and β^2 .	3
29.	If $\cos\theta + \sin\theta = 1$, then prove that $\cos\theta - \sin\theta = \pm 1$	3
30.	(A) The minute hand of a wall clock is 18 cm long. Find the area of the face of the clock described by the minute hand in 35 minutes. OR	3
	(B) AB is a chord of a circle centred at O such that ∠AOB=60°. If OA = 14 cm	
	then find the area of the minor segment. (take $\sqrt{3}$ =1.73)	
31.	Prove that $\sqrt{3}$ is an irrational number.	3
	Section D	
	Section D consists of 4 questions of 5 marks each	
32.	 (A) Solve the following system of linear equations graphically: x+2y = 3, 2x-3y+8 = 0 OR (B) Places A and B are 180 km apart on a highway. One car starts from A and another from B at the same time. If the car travels in the same direction at 	5

	_ /		$\sqrt{}$. 0						
	B			c						
34.	A boy whos	e eye le			•	•		•		nd 5
	in a horizon balloon fror elevation re balloon fror	n the eyeduces to the gr	es of the desired of	the boy at $\frac{1}{2}$ the spectrum $\frac{1}{2}$	an instant led of the w	is 60°. Af ind is 3m/	ter 12 s	econds, the	angle of	
	balloon from	n the eyeduces to the gr	es of the desired of	the boy at $\frac{1}{2}$ the spectrum $\frac{1}{2}$	an instant led of the w	is 60°. Af ind is 3m/	ter 12 s	econds, the	angle of	5
	balloon from elevation reballoon from Find the me	n the eyeduces to the great and and	/es of the to 30°. In the cound. (the boy at lifthe speed Use $\sqrt{3}$ = of the form 90-95	an instant in instant	is 60°. Affind is 3m/	ter 12 s	econds, the ind the heig	angle of the 110-115	5
	balloon from elevation re balloon from Find the me	n the eyeduces to the great and and	/es of the to 30°. In the cound. (the boy at lifthe speed Use $\sqrt{3}$ = and of the form	an instant in the ward of the	is 60°. Af ind is 3m/ ta:	ter 12 s	econds, the ind the heig	angle of the	5
	balloon from elevation reballoon from Find the medians	n the eyeduces to the gran and 85-90 15	ves of the to 30°. In median	the boy at lift the spee Use $\sqrt{3}$ = on milk in	an instant led of the was 1.73) sillowing data 20 OR 200 familie	is 60°. Affind is 3m/ta: 100 18	ter 12 s s s then f	econds, the ind the height 105-110 20 Society is given	angle of the 110-115 25	5
35.	balloon from elevation reballoon from Find the medians Class frequency The monthly	the eyeduces to the grean and 85-90	ves of the cound. (the boy at lifthe speed Use $\sqrt{3}$ = of the form 90-95	an instant index of the ward o	is 60°. Afrind is 3m/ ta:	ter 12 s	econds, the find the height 105-110 20 Society is given 4000-	angle of the 110-115	5
	balloon from elevation reballoon from balloon from Find the medical Class frequency The monthly Expendit ure	the eyeduces to the gran and 85-90 15 y exper 1000-	round. (I median mediture of the state of	the boy at lift the speed Use $\sqrt{3}$ = on milk in 2000-	an instant led of the was 1.73) sollowing data 20 OR 200 familie 2500-	is 60°. Afrind is 3m/ ta: 100 18 es of a Ho	ter 12 s s then f	econds, the find the height 105-110 20 Society is given 4000-	angle of the 110-115 25 ven below 4500-	5
	balloon from elevation reballoon from balloon from Find the medical Class frequency The month! Monthly Expendit ure (in Rs.) Number of	the eyeduces to the gran and 85-90 15 15 24	res of the to 30°. I median of the 30°. I median of th	the boy at lifthe speed Use $\sqrt{3}$ = on of the form $\frac{90-95}{22}$ on milk in $\frac{2000-2500}{33}$	an instant led of the was 1.73) Illowing data 95-100 20 OR 200 familie 2500- 3000	is 60°. Afrind is 3m/ ta: 100 18 es of a Ho 3000- 3500	ter 12 s 's then f	105-110 20 Society is given by the seconds, the seconds is given by the second	angle of the 110-115 25 25 ven below 4500-5000	5
	balloon from elevation reballoon from balloon from Find the median Class frequency The monthly Expendit ure (in Rs.) Number of families	the eyeduces to the gran and 85-90 15 15 24	res of the to 30°. I median of the 30°. I median of th	the boy at lifthe speed Use $\sqrt{3}$ = on of the form $\frac{90-95}{22}$ on milk in $\frac{2000-2500}{33}$	an instant in ed of the word o	is 60°. Afrind is 3m/ ta: 100 18 es of a Ho 3000- 3500	ter 12 s 's then f	105-110 20 Society is given by the seconds, the seconds is given by the second	angle of the 110-115 25 25 ven below 4500-5000	5

On the top layer there are 3 jars. In the next layer there are 6 jars. In the 3rd layer from the top there are 9 jars and so on till the 8th layer.

On the basis of the above situation answer the following questions.

(i) Write an A.P whose terms represent the number of jars in different layers starting from top . Also, find the common difference.

1

(ii) Is it possible to arrange 34 jars in a layer if this pattern is continued? Justify your answer.

(iii) (A) If there are 'n' number of rows in a layer then find the expression for finding the total number of jars in terms of n. Hence find S_8 .

2

OR

(iii) (B) The shopkeeper added 3 jars in each layer. How many jars are there in the 5th layer from the top?

2

37.

Triangle is a very popular shape used in interior designing. The picture given above shows a cabinet designed by a famous interior designer.

Here the largest triangle is represented by \triangle ABC and smallest one with shelf is represented by \triangle DEF. PQ is parallel to EF.

(i) Show that \triangle DPQ \sim \triangle DEF.

1

	(ii) If DP= 50 cm and PE = 70 cm then find $\frac{PQ}{EF}$.	1
	(iii) (A) If 2AB = 5DE and \triangle ABC \sim \triangle DEF then show that $\frac{perimeter\ of\ \triangle ABC}{perimeter\ of\ \triangle DEF}$ is constant. OR (iii) (B) If AM and DN are medians of triangles ABC and DEF respectively then prove	2
	that \triangle ABM \sim \triangle DEN.	2
38.		
	Metallic silos are used by farmers for storing grains. Farmer Girdhar has decided to build a new metallic silo to store his harvested grains. It is in the shape of a cylinder mounted by a cone. Dimensions of the conical part of a silo is as follows: Radius of base = 1.5 m Height = 2 m Dimensions of the cylindrical part of a silo is as follows: Radius = 1.5 m Height = 7 m On the basis of the above information answer the following questions. (i) Calculate the slant height of the conical part of one silo.	1
	(,) consumer the control of the cont	
	(ii) Find the curved surface area of the conical part of one silo.	1
	(iii)(A) Find the cost of metal sheet used to make the curved cylindrical part of 1 silo at the rate of ₹2000 per m^2 .	2
	(iii) (B) Find the total capacity of one silo to store grains.	2

Marking Scheme Class X Session 2024-25 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours MAX.MARKS: 80

Q.No.	Section A	Marks
1.	D) -6,6	1
2.	B) -5	1
3.	D) From a point inside a circle only two tangents can be drawn.	1
4.	A) 7	1
5.	B) 20 cm	1
6.	A) $\frac{11}{9}$	1
7.	C) 140 ⁰	1
8.	B) 8x ² - 20	1
9.	C) 30	1
10.	B) isosceles and similar	1
11.	A) Irrational and distinct	1
12.	C) $\frac{3}{\sqrt{3}}$	1
13.	B) $\frac{594}{7}$	1
14.	B) $\frac{3}{8}$	1
15.	B) (-4, 0)	1
16.	A) median	1
17.	C) (3,0)	1
18.	D) $\frac{3}{26}$	1
19.	B)	1
20.	D)	1

	Section B	
21. (A)	$480 = 2^5 \times 3 \times 5$ $720 = 2^4 \times 3^2 \times 5$	½ ½
	LCM $(480,720) = 2^5 \times 3^2 \times 5 = 1440$	1/2
	HCF $(480, 720) = 2^4 \times 3 \times 5 = 240$	1/2
	OR	
(B)	85 = 5x17, 238 = 2x7x17 HCF(85, 238) = 17	1
	17 = 85xm -238 m = 3	1
22.(A)	Total number of possible outcomes = 6x6=36 For a product to be odd, both the numbers should be odd. Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9) (11,11)	1/2
	no. of favourable outcomes = 9 P (product is odd) = $\frac{9}{36}$ Or $\frac{1}{4}$	1 1/2
	OR	
(B)	Total number of three-digit numbers = 900.	1/2
	Numbers with hundredth digit 8 & and unit's digit 5 are 805,815, 825,,895	1
	Number of favourable outcomes = 10 $P(\text{selecting one such number}) = \frac{10}{900} \text{ Or } \frac{1}{90}$	1/2
23.	$2(\frac{\sqrt{3}}{2})^2 - (\frac{1}{2})^2$	1 ½
	$\frac{2\left(\frac{2}{2}\right)^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{2}\right)^{2}}$	
	$\frac{2 \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{\sqrt{3}}\right)^2}{\left(\sqrt{2}\right)^2} = \frac{7}{12}$	1/2
24	Let the required point be (x,0)	1/2
	$\sqrt{(8-x)^2 + 25} = \sqrt{41}$ => $(8-x)^2 = 16$	1/2
	=> 8 - x =±4 => x = 4 , 12	
	Two points on the x-axis are (4,0) & (12,0).	1

25.	$AB = \sqrt{(3+5)^2 + (0-6)^2} = 10$	1/2
	BC = $\sqrt{(9-3)^2 + (8-0)^2}$ = 10	1/2
	$AC = \sqrt{(9+5)^2 + (8-6)^2} = 10\sqrt{2}$	1/2
	Since $AB = BC$, therefore $\triangle ABC$ is isosceles	1/2
	Section C	
26.(A)	F E	
	3 1 2 4 5 6 C	
	Since D, E, F are the mid points of BC, CA, AB respectively Therefore, EF BC, DF AC, DE AB BDEF is a parallelogram	1
	\angle 1= \angle 2 & \angle 3 = \angle 4 \triangle FBD \sim \triangle DEF	1
	Also, DCEF is a parallelogram ∠ 3= ∠ 6 & ∠ 1 = ∠ 2 (proved above)	
	Δ DEF ~ Δ ABC	1
	OR	
(B)	A R PR	
	$\Rightarrow \frac{AP}{AB} = \frac{PR}{BD} \qquad \qquad (i)$	1

	$ \Delta AQR \sim \Delta ACD $ $ \Rightarrow \frac{AQ}{AC} = \frac{RQ}{DC} \qquad \qquad (ii) $	
	Now, $\frac{AP}{AB} = \frac{AQ}{AC}$ (iii)	1
	Using (i), (ii) & (iii), $\frac{PR}{BD} = \frac{RQ}{DC}$ But, BD = DC	1
	=> PR = RQ or AD bisects PQ	
27.	Let the numbers be x and 18-x. $\frac{1}{x} + \frac{1}{18-x} = \frac{9}{40}$ => $18 \times 40 = 9x(18-x)$	1/2
	$=> x^2 - 18 x + 80 = 0$	
	=> (x-10)(x-8) = 0 => x=10, 8.	1
	=> 18- <i>x</i> =8, 10 Hence two numbers are 8 and 10.	1/2
28.	From given polynomial $\alpha + \beta = \frac{5}{6}$, $\alpha\beta = \frac{1}{6}$	1
	$\alpha^2 + \beta^2 = (\frac{5}{6})^2 - 2 \times \frac{1}{6} = \frac{13}{36}$	1
	And $\alpha^2 \beta^2 = (\frac{1}{6})^2 = \frac{1}{36}$	1/2
	$x^{2} - \frac{13}{36}x + \frac{1}{36}$ $\Rightarrow \text{ Required polynomial is } 36x^{2} - 13x + 1$	1/2
29.	$(\cos\theta + \sin\theta)^2 + (\cos\theta - \sin\theta)^2 = 2(\cos^2\theta + \sin^2\theta) = 2$ => $(1)^2 + (\cos\theta - \sin\theta)^2 = 2$ => $(\cos\theta - \sin\theta)^2 = 1$ => $\cos\theta - \sin\theta = \pm 1$	1 ½ 1 ½
30.(A)	Angle described by minute hand in 5 min = 30°. length of minute hand =18 cm = r. Area swept by minute hand in 35 minutes $= (\frac{22}{7} \times 18 \times 18 \times \frac{30}{360}) \times 7$ $= 594 cm^2.$ OR	2 1
(B)	Area of minor segment = Ar. Sector OAB- Ar. Δ OAB $= \frac{90}{360} \times \frac{22}{7} \times 14 \times 14 - \frac{\sqrt{3}}{4} \times 14 \times 14$ $= 69.23 \text{ cm}^2$	2

-		
31.	Let $\sqrt{3}$ be a rational number.	1/2
	∴ $\sqrt{3} = \frac{p}{q}$, where q≠0 and let p & q be co-prime.	/2
	$3q^2 = p^2 \implies p^2$ is divisible by $3 \implies p$ is divisible by $3 \longrightarrow p = 3a$, where 'a' is some integer	1
	$9a^2 = 3q^2 \Rightarrow q^2 = 3a^2 \Rightarrow q^2$ is divisible by $3 \Rightarrow q$ is divisible by $3 \Rightarrow q$. (ii)	1
	(i) and (ii) leads to contradiction as 'p' and 'q' are co-prime.	1/2
	Section D	
32.(A)	x+2y=3, 2x-3y+8=0 Correct graph of each equation Solution x=-1 and y=2	2+2 = 4 1
	OR	
(B)	Let car I starts from A with speed x km/hr and car II Starts from B with speed y km/hr (x>y)	
	Case I- when cars are moving in the same direction. Distance covered by car I in 9 hours = 9x. Distance covered by car II in 9 hours = 9y Therefore 9 (x-y) = 180 => x-y= 20(i)	2
	case II- when cars are moving in opposite directions.	
	Distance covered by Car I in 1 hour = x Distance covered by Car II in 1 hour = y	
	Therefore x + y=180(ii)	2
	Solving (i) and (ii) we get, x=100 km/hr, y=80 km/hr.	1
33.	Correct given, to prove, construction, figure	1
	Correct proof	2
	AR = AQ = 7cm BP = BR = AB-AR = 3cm CP = CQ = 5cm BC = BP+PC = 3+5 = 8 cm	1/2 1/2 1/2 1/2 1/2

34.	A X C	h h	C h F 1.35	i m			Correct figure 1mark
	Let A be the eye level & B, C are positions of balloon Distance covered by balloon in 12 sec = $3x12 = 36$ m BC = GF = 36 m $\tan 60^{\circ} = \sqrt{3} = \frac{h}{x}$ => h = $x\sqrt{3}$ (i)						
	$\tan 30^0 = \frac{1}{\sqrt{3}} = \frac{h}{x+36}$						1
	Solving (i) and	$= \frac{x+36}{\sqrt{3}} \text{ (ii)}$ $\log \text{ (i) and (ii) h= } 18\sqrt{3} = 31.14 \text{ m}$ $\text{nt of balloon from ground = } 1.35 + 31.14 = 32.49 \text{ m}$					
35.							Correct
	Class	x	f	$u = \frac{x - 102.5}{5}$	fu	cf	table 2marks
	85-90	87.5	15	-3	-45	15	
	90-95	92.5	22	-2	-44	37	
	95-100	97.5	20	-1	-20	57	
	100-105	102.5	18	0	0	75	
	105-110	107.5	20	1	20	95	
	110-115	112.5	25	2	50	120	
			$\Sigma f = 120$		$\Sigma fu = -39$		
	Mean = \overline{x} = 102.5 - 5 x $\frac{39}{120}$ = 100.875 Median class is 100-105 Median = 100 + $\frac{5}{18}$ (60-57) = 100.83						1 ½ ½ 1/2 1
				OR			

	Monthly Expenditure	fi	Xi	$f_i x_i$		Correct table
	1000-1500	24	1250	30,000		2marks
	1500-2000	40	1750	70,000		
	2000-2500	33	2250	74,250		
	2500-3000	X=28	2750	77,000		
	3000-3500	30	3250	97,500		
	3500-4000	22	3750	82,500		
	4000-4500	16	4250	68,000		
	4500-5000	7	4750	33,250		
	172+x=200 X=28					1
	Mean= $\frac{532500}{332}$					1
	2222 5					
	= 2662.5					1
			O a atiana E			
			Section E			
36.(i)	First term a = 3, A.					1/2
		common o	difference $d = 6$	6-3 = 3		1/2
(ii)	34 - 3 + (n-1)3					
(ii)	34 = 3 + (n-1)3 => $n = 34/3 = 11\frac{1}{3}$ which is not a positive integer.					1/2
		3			nattarn ia	1
	Therefore, it is not post continued.	ssidle to na	ave 34 jars in a	a layer if the given	pattern is	1/2
/iii\/Δ\						1/2
(iii)(A)	$S_n = \frac{n}{2} [2x3 + (n-1)]$]				/2
	$=\frac{n^2}{1}[6+3n-3]$					1
	$= \frac{n}{2} [6 + 3n-3]$ $= \frac{n}{2} [3+3n]$					
	$=3\frac{n}{2}[1+n]$					1,
	$s_8 = 3 \times \frac{8}{2} (1+8)$					1/2
	= 108					
			OR			
	A.P will be 6, 9, 12,					
(iii) (B)	a= 6, d=3	•••				1/2
	3, 3, 5					
	$t_5 = 6 + (5-1)3$					1
	= 6 + 12					
	= 18					1/2
37. (i)	DD0 DE5					
J 7 . (1)	∠DPQ = ∠DEF					
	∠PDQ =∠EDF					
(ii)	Therefore ⊿ DPQ	~ ⊿ DEF				1
(11)	DE = 50 + 70 = 120	0 cm				1/2
	$\frac{DP}{DE} = \frac{PQ}{EF}$					^-
	DE EF					
	i					1

	Therefore $\frac{PQ}{EF} = \frac{50}{120}$ or $\frac{5}{12}$	1/2			
(iii) (A)	$\frac{AB}{DE} = \frac{5}{2} = \frac{BC}{EF} = \frac{AC}{DF}$ $\Rightarrow AB = \frac{5}{2}DE$				
	$\frac{perimeter\ of\ \triangle ABC}{perimeter\ of\ \triangle DEF} = \frac{\frac{5}{2}(DE + EF + FD)}{DE + EF + FD} = \frac{5}{2} \ (\text{Constant})$				
	OR				
(iii)(B)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Correct fig. ½ mark			
	$\frac{AB}{DE} = \frac{BC}{EF} = \frac{BC/2}{EF/2} = \frac{BM}{EN}$ Also $\angle B = \angle E$	1			
	Therefore \triangle ABM \sim \triangle DEN.	1/2			
38. (i)	$I = \sqrt{r^2 + h^2}$ $= \sqrt{(1.5)^2 + (2)^2}$ $= \sqrt{2.25 + 4}$	1/2			
	$= \sqrt{6.25}$ = 2.5 m	1/2			
(ii)	CSA of cone = Π rl = $\frac{22}{7}$ x 1.5 x 2.5	1/2			
	$= \frac{1}{7} \times 1.5 \times 2.5$ $= 11.78 m^2$	1/2			
(iii) (A)	CSA of cylinder = 2π rh = $2 \times \frac{22}{7} \times 1.5 \times 7$	1			
	= 66 m ² Cost of metal sheet used = 66 x 2000 = ₹1,32,000	1			
(iii) (B)	OR Volume of cylinder = πr^2 h $= \frac{22}{7} \times (1.5)^2 \times 7$				
	$= 49.5 m^3$	1/2			

Volume of cone = $\frac{1}{3} \Pi r^2 h$ = $\frac{1}{3} \times \frac{22}{7} \times (1.5)^2 \times 2$	
$= 4.71 m^{3}$ Total capacity = 49.5 + 4.71 = 54.21 m^{3}	1/2

